Test date: 2020-09-12 **ID kit:** BR13836

Joy's Profile

Pet information		
Registered name	Sex	
GCR Joy pending	F	
Owner reported breed	Date of birth	
Border Collie	2020-03-28	
Genetic Diversity		
Joy's Percentage of Heterozygo	sity	
36%		

Health summary

At Risk 0 conditions

Carrier 1 condition

• Early Adult Onset Deafness For Border Collies only (Linkage test)

Clear 195 conditions

Test date: 2020-09-12 ID kit: BR13836

Genetic Diversity

Heterozygosity

Joy's Percentage of Heterozygosity

36%

Joy's genome analysis shows an average level of genetic heterozygosity when compared with other Border Collies.

Typical Range for Border Collies

32% - 39%

Health conditions known in the breed

Early Adult Onset Deafness For Border Collies only (Linkage test)	Gene	Risk Variant	Copies	Inheritance	Result
	Intergenic	Insertion	1	AR	Carrier

✤ Information about the genetic condition

Gradual hearing loss affecting both ears is observed usually between the ages of 5 to 7 years. Please note that this test is specifically for the Border Collie breed and is a predictive linkage test rather than a test for the true causal variant. Not all dogs with two copies of the linked marker will go on to show signs of hearing loss.

🗴 Breeder recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to develop. A carrier dog with one copy of the Deafness mutation can be safely bred with a clear dog with no copies of the Deafness mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the Deafness mutation. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. The carrier rate of the risk variant is up to 35% in the Border Collie population, highlighting the importance of keeping healthy carriers in the breeding program by breeding them to dogs tested "Clear" (zero copies) of the risk variant. Please note: It is possible that disease signs similar to the ones caused by the Deafness mutation could develop due to a different genetic or clinical cause.

Collie Eye Anomaly (CEA)	Gene	Risk Variant	Copies	Inheritance	Result
	NHEJ1	Deletion	0	AR	Clear

↔ Information about the genetic condition

Collie Eye Anomaly is primarily characterized by choroidal hypoplasia, leading to an underdeveloped vascular supply to the retina, and is especially visible temporal to the optic nerve. CEA lesions may be present in both eyes or asymmetric in nature. CEA-associated choroidal hypoplasia is non-progressive and usually does not cause visual deficits on its own. However, CEA has a range of clinical expressions. Vision impairment is more likely in dogs with the "extended CEA phenotype," which may include optic nerve head colobomas, retinal detachment or intraocular hemorrhage secondary to coloboma(s) in severely affected dogs. Optic nerve head colobomas appear as excavations of the optic disc surface. Diagnosis of CEA lesions should be completed before 10 weeks of age, as retinal pigmentation can mask choroidal hypoplasia as the puppies grow, a phenomenon termed "go normal" by breeders. Research is ongoing to determine what additional genetic factors may be present that influence the range of severity seen in dogs with CEA.

S Breeder recommendation

This disorder is autosomal recessive, meaning two copies of the variant are needed for a dog to be at an elevated risk for being diagnosed with the condition. A carrier dog with one copy of the Collie Eye Anomaly variant can be safely bred with a clear dog with no copies of the Collie Eye Anomaly variant. About half of the puppies will have one copy (carriers) and half will have no copies of the variant. Furthermore, a dog with two copies of the CEA variant can be safely bred with a clear dog. The resulting puppies will all be carriers. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected puppies. Please note: Recent research has suggested that additional genetic risk factors likely exist in some breeds that resemble or contribute to CEA risk, especially the more severe disorder expression. It is possible that disorder signs similar to the ones associated with this CEA variant could develop due to a different genetic or clinical cause.

Health conditions known in the breed

Dental Hypomineralization	Gene	Risk Variant	Copies	Inheritance	Result
	FAM20C	C>T	0	AR	Clear

↔ Information about the genetic condition

Clinical signs include brownish dental discoloration and abnormal wear of teeth. As the teeth wear, the biting surfaces of the teeth darkens, become dark brown in color; the enamel layer may also show a light brown discoloration and appear dull. The disorder causes severe tooth wear leading to pulp exposure, chronic inflammation of the pulp, and pulpal necrosis. Histologically, dentin of affected dogs has an abnormal structure and the enamel can be slightly hypoplastic.

🗴 Breeder recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to be shown. A carrier dog with one copy of the Dental Hypomineralization mutation can be safely bred with a clear dog with no copies of the Dental Hypomineralization mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the Dental Hypomineralization mutation. A dog with two copies of the Dental Hypomineralization mutation can be safely bred with a clear dog. The resulting puppies will all be carriers. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected puppies. Please note: It is possible that disease signs similar to the ones caused by the Dental Hypomineralization mutation could develop due to a different genetic or clinical cause.

Intestinal Cobalamin Malabsorption (Discovered in the Border Collie)	Gene	Risk Variant	Copies	Inheritance	Result
	CUBN	Deletion	0	AR	Clear

↔ Information about the genetic condition

Initial signs of intestinal cobalamin malabsorption can be seen in puppies 6 to 12 weeks of age, when cobalamin store become depleted. Puppies with IGS suffer from weakness and loss of appetite and fail to grow normally Bloodwork shows anemia, neutropenia, and low cobalamin concentrations. High levels of homocysteine and methylmalonic acid can also be observed in the blood. Proteinuria is typically present.

🗴 Breeder recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to occur. A carrier dog with one copy of the ICM mutation can be safely bred with a clear dog with no copies of the ICM mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the ICM mutation. A dog with two copies of the ICM mutation can be safely bred with a clear dog. The resulting puppies will all be carriers. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected puppies. Please note: It is possible that disease signs similar to the ones caused by the ICM mutation could develop due to a different genetic or clinical cause.

Health conditions known in the breed

N

IDR1 Medication Sensitivity	Gene	Risk Variant	Copies	Inheritance	Result
	MDR1/ABCB1	Deletion	0	AD	Clear

Information about the genetic condition

Dogs with this variant are asymptomatic until exposed to a medication that uses the drug transport pump rendered defective by the mutation in the MDR1 (also called ABCB1) gene. Medications known to use this P-glycoprotein pump are macrocyclic lactones (antiparasitic drugs), loperamide (antidiarrheal), erythromycin (antibiotic), acepromazine (tranquilizer), butorphanol (opioid), certain drugs used in cancer treatment (vincristine, vinblastine, and doxorubicin), and others. When these medications are administered, they accumulate in the brain which results in adverse reactions. Typical symptoms include tremors, loss of balance, seizures, obtundation, excessive salivation, dilated pupils, and bradycardia. If untreated, the condition may lead to respiratory arrest, coma or death. Because dogs with 1 copy of the variant will have some P-glycoprotein function, the most severe cases tend to occur in dogs that have 2 copies of the variant and, therefore, lack any functional P-glycoprotein pumps. However, the disorder can still be very severe in dogs that have only one copy of the mutation.

Scheder Recommendation

This disorder is autosomal dominant meaning that only one copy of the variant is needed for associated signs to occur. For some breeds where the MDR1 mutation frequency is particularly high, breeders may consider mating pairs using dogs that have one or two copies of the MDR1 variant to maintain genetic diversity within their breed. It is important that resulting puppies be tested for the MDR1 variant to ensure safe future medical treatment. If a dog with one copy of the MDR1 variant is bred with a clear dog with no copies of the MDR1 variant, about half of the puppies will have one copy and half will have no copies of the MDR1 variant. If a dog with two copies of the MDR1 variant is bred with a clear dog, the resulting puppies will all have one copy of the variant. Please note: It is possible that clinical signs similar to the ones caused by the MDR1 variant could develop due to a different genetic or clinical cause.

Sensory Neuropathy	Gene	Risk Variant	Copies	Inheritance	Result
	FAM134B	Insertion	0	AR	Clear

Information about the genetic condition

Clinical signs are detectable in puppies from two to seven months of age. Clinical signs include incoordination of gait (ataxia), knuckling of the paws, hyperextension of the limbs, and self-mutilation of the limbs. The hind legs are usually most severely affected. Loss of sensation is progressive and affects all limbs. Urinary incontinence and regurgitation can occur in the later stages of the disorder.

Scheder Recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to develop. A carrier dog with one copy of the Sensory Neuropathy mutation can be safely bred with a clear dog with no copies of the Sensory Neuropathy mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the Sensory Neuropathy mutation. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected puppies. Please note: It is possible that disease signs similar to the ones caused by the Sensory Neuropathy mutation could develop due to a different genetic or clinical cause.

Health conditions known in the breed

Trapped Neutrophil Syndrome	Gene	Risk Variant	Copies	Inheritance	Result
	VPS13B	Deletion	0	AR	Clear

↔ Information about the genetic condition

Clinical signs of TNS include an exceptional susceptibility to infections secondary to the low number of circulating neutrophils in the blood stream. Affected dogs also tend to suffer from chronic inflammatory conditions such as arthritis. Clinical signs are usually observed by 6 to 12 weeks of age and can include a smaller overall size as well as a ferret-like face due to abnormal craniofacial development leading to a narrowed, elongated skull shape. For some affected dogs, clinical signs can be mild and go unnoticed until adulthood. Nevertheless, TNS is a severe disease and affected dogs have a shorter life expectancy.

🗴 Breeder recommendation

This disease is autosomal recessive meaning that two copies of the mutation are needed for disease signs to occur. A carrier dog with one copy of the TNS mutation can be safely bred with a clear dog with no copies of the TNS mutation. About half of the puppies will have one copy (carriers) and half will have no copies of the TNS mutation. Puppies in a litter which is expected to contain carriers should be tested prior to breeding. Carrier to carrier matings are not advised as the resulting litter may contain affected puppies. Please note: It is possible that disease signs similar to the ones caused by the TNS mutation could develop due to a different genetic or clinical cause.

Traits

Coat Color

	Gene	Variant	Copies	Result
Fawn	ASIP	ау	0	No effect
Recessive Black	ASIP	а	0	No effect
Tan Points Two copies, or occasionally one copy, of this variant may result in a black and tan coat color pattern.	ASIP	at	2	Tan points possible
Dominant Black	CBD103	KB	0	No effect
Mask One or two copies of the Mask mutation will result in the presence of a dark facial mask covering the muzzle. This mask can cover only the very front of the muzzle, or can extend down to the chest and front legs. Mask can be hidden by other trait variants.	MC1R	Em	1	Dark Muzzle possible
Recessive Red (e1)	MC1R	e1	0	No effect
Widow's Peak (Discovered in the Afghan Hound and Saluki)	MC1R	Eg	0	No effect

Color Modification

	Gene	Variant	Copies	Result
Dilution (d2)	MLPH	d²	0	No effect
Chocolate (basd)	TYRP1	basd	0	No effect
Chocolate (bc)	TYRP1	b∘	0	No effect
Chocolate (bd)	TYRP1	bď	0	No effect
Chocolate (bs) To show chocolate coloration a dog must inherit two chocolate variants, one from each parent. This can either be two copies of a particular variant, such as this one ("bs"), or two of any combination of chocolate variants.	TYRP1	p₂	1	Black features likely, chocolate possible

Coat Patterns

	Gene	Variant	Copies	Result
Piebald	MITF	Sp	0	No effect
Merle Most dogs with one copy of the Merle variant will show Merle patterning. Most dogs with two copies will be mostly white, but in some cases will show Merle patterning. Some dogs with this variant will not show the Merle pattern. This is because the Merle variant can sometimes be shortened (known as cryptic or atypical Merle), and these forms do not have an effect on appearance.	PMEL	Μ	1	Merle possible
Harlequin	PSMB7	Н	0	No effect
Saddle Tan One or two copies of the Saddle Tan variant are needed for the "saddle" to be seen. However the Tan Points variant must also be present. The Saddle Tan variant is actually considered to be the wild type, or default, variant.	RALY	-	1	Saddle possible

Coat Length and Curl

	Gene	Variant	Copies	Result
Long Hair (lh1)	FGF5	lh1	2	Long coat
To show a long coat, a dog must inherit two copies of a Long Hair variant, one from each parent. This can either be two copies of a particular variant, such as this one (Ih1) or two of any combination of long hair variants. However, there are other variants suspected to influence coat length.				
Long Hair (lh2)	FGF5	lh ²	0	No effect
Long Hair (lh4)	FGF5	lh4	0	No effect
Long Hair (lh5)	FGF5	lh5	0	No effect
Curly Coat	KRT71	С	0	No effect

Hairlessness

	Gene	Variant	Copies	Result
Hairlessness (Discovered in the American Hairless Terrier)	SGK3	hraht	0	No effect
Hairlessness (Discovered in the Scottish Deerhound)	SKG3	hrsd	0	No effect
Shedding				
	Gene	Variant	Copies	Result
Reduced Shedding	MC5R	sd	0	Seasonal shedder
More Coat Traits				
	Gene	Variant	Copies	Result
Albino	SLC45A2	Cal	0	No effect
Head Shape				
Head Shape	Gene	Variant	Copies	Result
Head Shape Short Snout (BMP3 variant)	Gene BMP3	Variant -	Copies O	Result No effect
Head Shape Short Snout (BMP3 variant) Short Snout (SMOC2 variant)	Gene BMP3 SMOC2	Variant - -	Copies 0 0	Result No effect No effect
Head Shape Short Snout (BMP3 variant) Short Snout (SMOC2 variant) Eye Color	Gene BMP3 SMOC2	Variant - -	Copies 0 0	Result No effect No effect
Head Shape Short Snout (BMP3 variant) Short Snout (SMOC2 variant) Eye Color	Gene BMP3 SMOC2 Gene	Variant - - Variant	Copies 0 0 Copies	Result No effect No effect Result
Head Shape Short Snout (BMP3 variant) Short Snout (SMOC2 variant) Eye Color Blue Eyes (Discovered in the Siberian Husky)	Gene BMP3 SMOC2 Gene ALX4	Variant Variant Variant	Copies 0 0 Copies	Result No effect No effect Result No effect
Head Shape Short Snout (BMP3 variant) Short Snout (SMOC2 variant) Eye Color Blue Eyes (Discovered in the Siberian Husky) Ears	Gene BMP3 SMOC2 Gene ALX4	Variant - Variant Variant	Copies 0 0 Copies	Result No effect Result No effect
Head Shape Short Snout (BMP3 variant) Short Snout (SMOC2 variant) Eye Color Blue Eyes (Discovered in the Siberian Husky) Ears	Gene SMOC2 Gene ALX4 Gene	Variant - Variant Variant	Copies 0 0 Copies 0	Result No effect Result No effect No effect

Test date: 2020-09-12 ID kit: BR13836

Extra Toes

	Gene	Variant	Copies	Result
Hind Dewclaws (Discovered in Asian breeds)	LMBR1	DC-1	0	No effect
Hind Dewclaws (Discovered in Western breeds)	LMBR1	DC-2	1	Hind dewclaws possible
One or two copies of this Hind Dewclaws variant may result in your dog having hind dewclaws. Around half of the dogs with one copy of this variant will have hind dewclaws, and it				

in your dog having hind dewclaws. Around half of the dogs with one copy of this variant will have hind dewclaws, and it is possible for the dewclaws to be just on one leg. With two copies the trait is more likely to be expressed and could be more pronounced.

More Body Features

	Gene	Variant	Copies	Result
Back Muscle and Bulk	ACSL4	-	0	No effect
High Altitude Adaptation	EPAS1	-	0	No effect
Short Legs (Chondrodysplasia, CDPA)	FGF4	-	0	No effect
Short Tail	T-box	Т	0	Full tail length likely

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
2,8-dihydroxyadenine (DHA) Urolithiasis	APRT	G>A	0	AR	Clear
Acral Mutilation Syndrome	GDNF	C>T	0	AR	Clear
Acute Respiratory Distress Syndrome	ANLN	C>T	0	AR	Clear
Alaskan Husky Encephalopathy	SLC19A3	G>A	0	AR	Clear
Alexander Disease	GFAP	G>A	0	AR	Clear
Amelogenesis Imperfecta (Discovered in the Italian Greyhound)	ENAM	Deletion	0	AR	Clear
Amelogenesis Imperfecta (Discovered in the Parson Russell Terrier)	ENAM	C>T	0	AR	Clear
Bandera's Neonatal Ataxia	GRM1	Insertion	0	AR	Clear
Benign Familial Juvenile Epilepsy	LGI2	A>T	0	AR	Clear
Canine Leukocyte Adhesion Deficiency (CLAD), type III	FERMT3	Insertion	0	AR	Clear
Canine Multifocal Retinopathy 1	BEST1	C>T	0	AR	Clear
Canine Multifocal Retinopathy 2	BEST1	G>A	0	AR	Clear
Canine Multifocal Retinopathy 3	BEST1	Deletion	0	AR	Clear
Canine Scott Syndrome	ANO6	G>A	0	AR	Clear
Centronuclear Myopathy (Discovered in the Great Dane)	BIN1	A>G	0	AR	Clear
Centronuclear Myopathy (Discovered in the Labrador Retriever)	PTPLA	Insertion	0	AR	Clear
Cerebellar Ataxia	RAB24	A>C	0	AR	Clear
Cerebellar Cortical Degeneration	SNX14	C>T	0	AR	Clear
Cerebellar Hypoplasia	VLDLR	Deletion	0	AR	Clear
Cerebral Dysfunction	SLC6A3	G>A	0	AR	Clear
Chondrodysplasia (Discovered in Norwegian Elkhound and Karelian Bear Dog)	ITGA10	C>T	0	AR	Clear

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Cleft Lip & Palate with Syndactyly	ADAMTS20	Deletion	0	AR	Clear
Cleft Palate	DLX6	C>A	0	AR	Clear
Complement 3 Deficiency	C3	Deletion	0	AR	Clear
Cone Degeneration (Discovered in the Alaskan Malamute)	CNGB3	Deletion	0	AR	Clear
Cone Degeneration (Discovered in the German Shepherd Dog)	CNGA3	C>T	0	AR	Clear
Cone Degeneration (Discovered in the German Shorthaired Pointer)	CNGB3	G>A	0	AR	Clear
Cone-Rod Dystrophy	NPHP4	Deletion	0	AR	Clear
Cone-Rod Dystrophy 1	PDE6B	Deletion	0	AR	Clear
Cone-Rod Dystrophy 2	IQCB1	Insertion	0	AR	Clear
Congenital Dyshormonogenic Hypothyroidism with Goiter (Discovered in the Shih Tzu)	SLC5A5	G>A	0	AR	Clear
Congenital Hypothyroidism (Discovered in the Tenterfield Terrier)	TPO	C>T	0	AR	Clear
Congenital Hypothyroidism (Discovered in the Toy Fox and Rat Terrier)	TPO	C>T	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Jack Russell Terrier)	CHRNE	Insertion	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Labrador Retriever)	COLQ	T>C	0	AR	Clear
Congenital Myasthenic Syndrome (Discovered in the Old Danish Pointer)	СНАТ	G>A	0	AR	Clear
Craniomandibular Osteopathy (Discovered in Scottish Terrier breeds)	SLC37A2	C>T	0	AD	Clear
Cystic Renal Dysplasia and Hepatic Fibrosis	INPP5E	G>A	0	AR	Clear
Cystinuria Type I-A	SLC3A1	C>T	0	AR	Clear
Cystinuria Type II-A	SLC3A1	Deletion	0	AD	Clear

Optimal Selection

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Degenerative Myelopathy	SOD1	G>A	0	AR	Clear
Dilated Cardiomyopathy (Discovered in the Schnauzer)	RBM20	Deletion	0	AR	Clear
Dominant Progressive Retinal Atrophy	RHO	C>G	0	AD	Clear
Dystrophic Epidermolysis Bullosa (Discovered in the Central Asian Ovcharka)	COL7A1	C>T	0	AR	Clear
Dystrophic Epidermolysis Bullosa (Discovered in the Golden Retriever)	COL7A1	C>T	0	AR	Clear
Early Retinal Degeneration (Discovered in the Norwegian Elkhound)	STK38L	Insertion	0	AR	Clear
Early-Onset Progressive Polyneuropathy (Discovered in the Alaskan Malamute)	NDRG1	G>T	0	AR	Clear
Early-Onset Progressive Retinal Atrophy (Discovered in the Portuguese Water Dog)	CCDC66	Insertion	0	AR	Clear
Epidermolytic Hyperkeratosis	KRT10	G>T	0	AR	Clear
Episodic Falling Syndrome	BCAN	Insertion	0	AR	Clear
Exercise-Induced Collapse	DNM1	G>T	0	AR	Clear
Factor VII Deficiency	F7	G>A	0	AR	Clear
Factor XI Deficiency	FXI	Insertion	0	AD	Clear
Fanconi Syndrome	FAN1	Deletion	0	AR	Clear
Fetal Onset Neuroaxonal Dystrophy	MFN2	G>C	0	AR	Clear
Focal Non-Epidermolytic Palmoplantar Keratoderma	KRT16	G>C	0	AR	Clear
Generalized Progressive Retinal Atrophy (Discovered in the Schapendoes)	CCDC66	Insertion	0	AR	Clear
Glanzmann Thrombasthenia Type I (Discovered in Great Pyrenees)	ITGA2B	C>G	0	AR	Clear
Glanzmann Thrombasthenia Type I (Discovered in mixed breed dogs)	ITGA2B	C>T	0	AR	Clear

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Globoid Cell Leukodystrophy (Discovered in Terriers)	GALC	A>C	0	AR	Clear
Globoid Cell Leukodystrophy (Discovered in the Irish Setter)	GALC	A>T	0	AR	Clear
Glycogen Storage Disease Type Ia (Discovered in the Maltese)	G6PC	G>C	0	AR	Clear
Glycogen Storage Disease Type IIIa, (GSD IIIa)	AGL	Deletion	0	AR	Clear
GM1 Gangliosidosis (Discovered in the Portuguese Water Dog)	GLB1	G>A	0	AR	Clear
GM2 Gangliosidosis (Discovered in the Japanese Chin)	HEXA	G>A	0	AR	Clear
GM2 Gangliosidosis (Discovered in the Toy Poodle)	HEXB	Deletion	0	AR	Clear
Hemophilia A (Discovered in Old English Sheepdog)	FVIII	C>T	0	XR	Clear
Hemophilia A (Discovered in the Boxer)	FVIII	C>G	0	XR	Clear
Hemophilia A (Discovered in the German Shepherd Dog - Variant 1)	FVIII	G>A	0	XR	Clear
Hemophilia A (Discovered in the German Shepherd Dog - Variant 2)	FVIII	G>A	0	XR	Clear
Hemophilia A (Discovered in the Havanese)	FVIII	Insertion	0	XR	Clear
Hemophilia B	FIX	G>A	0	XR	Clear
Hemophilia B (Discovered in the Airedale Terrier)	FIX	Insertion	0	XR	Clear
Hemophilia B (Discovered in the Lhasa Apso)	FIX	Deletion	0	XR	Clear
Hereditary Ataxia (Discovered in the Norwegian Buhund)	KCNIP4	T>C	0	AR	Clear
Hereditary Elliptocytosis	SPTB	C>T	0	AD	Clear
Hereditary Footpad Hyperkeratosis	FAM83G	G>C	0	AR	Clear
Hereditary Nasal Parakeratosis (Discovered in the Greyhound)	SUV39H2	Deletion	0	AR	Clear
Hereditary Vitamin D-Resistant Rickets Type II	VDR	Deletion	0	AR	Clear

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Hyperuricosuria	SLC2A9	G>T	0	AR	Clear
Hypocatalasia	CAT	G>A	0	AR	Clear
Hypomyelination	FNIP2	Deletion	0	AR	Clear
Hypophosphatasia	Confidential	-	0	AR	Clear
Ichthyosis (Discovered in the American Bulldog)	NIPAL4	Deletion	0	AR	Clear
Ichthyosis (Discovered in the Great Dane)	SLC27A4	G>A	0	AR	Clear
Intestinal Cobalamin Malabsorption (Discovered in the Beagle)	CUBN	Deletion	0	AR	Clear
Juvenile Encephalopathy (Discovered in the Parson Russell Terrier)	Confidential	-	0	AR	Clear
Juvenile Laryngeal Paralysis and Polyneuropathy	RAB3GAP1	Deletion	0	AR	Clear
Juvenile Myoclonic Epilepsy	DIRAS1	Deletion	0	AR	Clear
L-2-Hydroxyglutaric aciduria (Discovered in the Staffordshire Bull Terrier)	L2HGDH	T>C	0	AR	Clear
L-2-Hydroxyglutaric Aciduria (Discovered in the West Highland White Terrier)	Confidential	-	0	AR	Clear
Lagotto Storage Disease	ATG4D	G>A	0	AR	Clear
Lamellar Ichthyosis	TGM1	Insertion	0	AR	Clear
Lethal Acrodermatitis (Discovered in the Bull Terrier)	MKLN1	A>C	0	AR	Clear
Ligneous Membranitis	PLG	T>A	0	AR	Clear
Lung Developmental Disease (Discovered in the Airedale Terrier)	LAMP3	C>T	0	AR	Clear
Macrothrombocytopenia (Discovered in Norfolk and Cairn Terrier)	TUBB1	G>A	0	AR	Clear
May-Hegglin Anomaly	МҮН9	G>A	0	AD	Clear
Microphthalmia (Discovered in the Soft-Coated Wheaten Terrier)	RBP4	Deletion	0	AR	Clear

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Mucopolysaccharidosis Type IIIA (Discovered in the Dachshund)	SGSH	C>A	0	AR	Clear
Mucopolysaccharidosis Type IIIA (Discovered in the New Zealand Huntaway)	SGSH	Insertion	0	AR	Clear
Mucopolysaccharidosis Type VII (Discovered in the Brazilian Terrier)	GUSB	C>T	0	AR	Clear
Mucopolysaccharidosis Type VII (Discovered in the German Shepherd Dog)	GUSB	G>A	0	AR	Clear
Muscular Dystrophy (Discovered in the Cavalier King Charles Spaniel)	Dystrophin	G>T	0	XR	Clear
Muscular Dystrophy (Discovered in the Golden Retriever)	Dystrophin	A>G	0	XR	Clear
Muscular Dystrophy (Discovered in the Landseer)	COL6A1	G>T	0	AR	Clear
Muscular Dystrophy (Discovered in the Norfolk Terrier)	Dystrophin	Deletion	0	XR	Clear
Muscular Hypertrophy (Double Muscling)	MSTN	T>A	0	AR	Clear
Musladin-Lueke Syndrome	ADAMTSL2	C>T	0	AR	Clear
Myotonia Congenita (Discovered in Australian Cattle Dog)	CLCN1	Insertion	0	AR	Clear
Myotubular Myopathy	MTM1	A>C	0	XR	Clear
Narcolepsy (Discovered in the Dachshund)	HCRTR2	G>A	0	AR	Clear
Narcolepsy (Discovered in the Labrador Retriever)	HCRTR2	G>A	0	AR	Clear
Nemaline Myopathy	NEB	C>A	0	AR	Clear
Neonatal Cerebellar Cortical Degeneration	SPTBN2	Deletion	0	AR	Clear
Neonatal Encephalopathy with Seizures	ATF2	T>G	0	AR	Clear
Neuroaxonal Dystrophy (Discovered in Spanish Water Dog)	TECPR2	C>T	0	AR	Clear
Neuroaxonal Dystrophy (Discovered in the Papillon)	PLA2G6	G>A	0	AR	Clear
Neuroaxonal Dystrophy (Discovered in the Rottweiler)	VPS11	A>G	0	AR	Clear

Optimal Selection

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Neuronal Ceroid Lipofuscinosis 1	PPT1	Insertion	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 7	MFSD8	Deletion	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Alpine Dachsbracke)	CLN8	Deletion	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 8 (Discovered in the Australian Shepherd)	CLN8	G>A	0	AR	Clear
Neuronal Ceroid Lipofuscinosis 8 (Discovered in the English Setter)	CLN8	T>C	0	AR	Clear
Osteochondrodysplasia	SLC13A1	Deletion	0	AR	Clear
Osteochondromatosis (Discovered in the American Staffordshire Terrier)	EXT2	C>A	0	AR	Clear
Osteogenesis Imperfecta (Discovered in the Beagle)	COL1A2	C>T	0	AD	Clear
Osteogenesis Imperfecta (Discovered in the Dachshund)	SERPINH1	T>C	0	AR	Clear
P2RY12-associated Bleeding Disorder	P2RY12	Deletion	0	AR	Clear
Paroxysmal Dyskinesia	PIGN	C>T	0	AR	Clear
Persistent Müllerian Duct Syndrome	AMHR2	C>T	0	AR	Clear
Phosphofructokinase Deficiency	PFKM	G>A	0	AR	Clear
Polycystic Kidney Disease	PKD1	G>A	0	AD	Clear
Prekallikrein Deficiency	KLKB1	T>A	0	AR	Clear
Primary Ciliary Dyskinesia	CCDC39	C>T	0	AR	Clear
Primary Lens Luxation	ADAMTS17	G>A	0	AR	Clear
Primary Open Angle Glaucoma (Discovered in Basset Fauve de Bretagne)	ADAMTS17	G>A	0	AR	Clear
Primary Open Angle Glaucoma (Discovered in Petit Basset Griffon Vendeen)	ADAMTS17	Insertion	0	AR	Clear
Primary Open Angle Glaucoma and Lens Luxation (Discovered in Chinese Shar-Pei)	ADAMTS17	Deletion	0	AR	Clear

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Progressive Early-Onset Cerebellar Ataxia	SEL1L	T>C	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Basenji)	SAG	T>C	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Golden Retriever - GR-PRA1 variant)	SLC4A3	Insertion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Lhasa Apso)	IMPG2	Insertion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Miniature Long Haired Dachshund)	RPGRIP1	Insertion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Papillon and Phalène)	CNGB1	Deletion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Shetland Sheepdog - CNGA1 variant)	CNGA1	Deletion	0	AR	Clear
Progressive Retinal Atrophy (Discovered in the Swedish Vallhund)	MERTK	Insertion	0	AR	Clear
Progressive Retinal Atrophy 1 (Discovered in the Italian Greyhound)	Confidential	-	0	AR	Clear
Progressive Retinal Atrophy Type III	FAM161A	Insertion	0	AR	Clear
Progressive Rod Cone Degeneration (prcd-PRA)	PRCD	G>A	0	AR	Clear
Protein Losing Nephropathy	NPHS1	G>A	0	AR	Clear
Pyruvate Dehydrogenase Phosphatase 1 Deficiency	PDP1	C>T	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the Basenji)	PKLR	Deletion	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the Beagle)	PKLR	G>A	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the Pug)	PKLR	T>C	0	AR	Clear
Pyruvate Kinase Deficiency (Discovered in the West Highland White Terrier)	PKLR	Insertion	0	AR	Clear
QT Syndrome	KCNQ1	C>A	0	AD	Clear
Renal Cystadenocarcinoma and Nodular Dermatofibrosis	FLCN	A>G	0	AD	Clear

Optimal Selection

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
Rod-Cone Dysplasia 1	PDE6B	G>A	0	AR	Clear
Rod-Cone Dysplasia 1a	PDE6B	Insertion	0	AR	Clear
Rod-Cone Dysplasia 3	PDE6A	Deletion	0	AR	Clear
Severe Combined Immunodeficiency (Discovered in Frisian Water Dogs)	RAG1	G>T	0	AR	Clear
Severe Combined Immunodeficiency (Discovered in Russell Terriers)	PRKDC	G>T	0	AR	Clear
Shaking Puppy Syndrome (Discovered in the Border Terrier)	Confidential	-	0	AR	Clear
Skeletal Dysplasia 2	COL11A2	G>C	0	AR	Clear
Spinocerebellar Ataxia (Late-Onset Ataxia)	CAPN1	G>A	0	AR	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures	KCNJ10	C>G	0	AR	Clear
Spondylocostal Dysostosis	HES7	Deletion	0	AR	Clear
Spongy Degeneration with Cerebellar Ataxia (Discovered in Belgian Malinois - SDCA1)	KCNJ10	T>C	0	AR	Clear
Spongy Degeneration with Cerebellar Ataxia (Discovered in Belgian Malinois - SDCA2)	ATP1B2	Insertion	0	AR	Clear
Startle Disease (Discovered in Irish Wolfhounds)	SLC6A5	G>T	0	AR	Clear
Van den Ende-Gupta Syndrome	SCARF2	Deletion	0	AR	Clear
von Willebrand's Disease, type 1	VWF	G>A	0	AD	Clear
von Willebrand's Disease, type 2	VWF	T>G	0	AR	Clear
von Willebrand's Disease, type 3 (Discovered in the Kooiker Hound)	VWF	G>A	0	AR	Clear
von Willebrand's Disease, type 3 (Discovered in the Scottish Terrier)	VWF	Deletion	0	AR	Clear
von Willebrand's Disease, type 3 (Discovered in the Shetland Sheepdog)	VWF	Deletion	0	AR	Clear

Genetic Condition	Gene	Risk Variant	Copies	Inheritance	Result
X-Linked Ectodermal Dysplasia	EDA	G>A	0	XR	Clear
X-Linked Hereditary Nephropathy (Discovered in the Navasota Dog)	COL4A5	Deletion	0	XR	Clear
X-Linked Hereditary Nephropathy (Discovered in the Samoyed)	COL4A5	G>T	0	XR	Clear
X-Linked Myotubular Myopathy	MTM1	C>A	0	XR	Clear
X-Linked Progressive Retinal Atrophy 1	RPGR	Deletion	0	XR	Clear
X-Linked Progressive Retinal Atrophy 2	RPGR	Deletion	0	XR	Clear
X-Linked Severe Combined Immunodeficiency (Discovered in the Basset Hound)	IL2RG	Deletion	0	XR	Clear
X-Linked Severe Combined Immunodeficiency (Discovered in the Cardigan Welsh Corgi)	IL2RG	Insertion	0	XR	Clear
X-Linked Tremors	PLP1	A>C	0	XR	Clear
Xanthinuria (Discovered in a mixed breed dog)	Confidential	-	0	AR	Clear
Xanthinuria (Discovered in the Cavalier King Charles Spaniel)	Confidential	-	0	AR	Clear
Xanthinuria (Discovered in the Toy Manchester Terrier)	Confidential	-	0	AR	Clear

Test date: 2020-09-12 ID kit: BR13836

Glossary of genetic terms

Test result definitions

At Risk: Based on the disorder's mode of inheritance, the dog inherited a number of genetic variant(s) which increases the dog's risk of being diagnosed with the associated disorder.

Carrier: The dog inherited one copy of a genetic variant when two copies are usually necessary to increase the dog's risk of being diagnosed with the associated disorder. While carriers are usually not at risk of clinical expression of the disorder, carriers of some complex variants may be associated with a low risk of developing the disorder.

Clear: The dog did not inherit the genetic variant(s) associated with the disorder and will not be at elevated risk of being diagnosed with the disorder due to this genotype. However, similar clinical signs could develop from different genetic or clinical causes.

Inconclusive: An inconclusive result indicates a confident call could not be made based on the data for that genetic variant. Health testing is performed in replicates, and on occasion the outcomes do not agree. This may occur due to an unusual sequence of DNA in the region tested, multiple cell genotypes present due to chimerism or acquired mutations, or due to quality of the DNA sample.

Inheritance mode definitions

Autosomal Recessive (AR): For autosomal recessive disorders, dogs with two copies of the genetic variant are at risk of developing the associated disorder. Dogs with one copy of the variant are considered carriers and are usually not at risk of developing the disorder. However, carriers of some complex variants grouped in this category may be associated with a low risk of developing the disorder. Dogs with one or two copies may pass the disorder-associated variant to their puppies if bred.

Autosomal Dominant (AD): For autosomal dominant disorders, dogs with one or two copies of the genetic variant are at risk of developing the associated disorder. Inheriting two copies of the variant may increase the risk of development of the disorder or cause the condition to be more severe. These dogs may pass the disorder-associated variant to their puppies if bred.

X-linked Recessive (XR): For X-linked recessive disorders, the genetic variant is found on the X chromosome. Female dogs must inherit two copies of the variant to be at risk of developing the condition, whereas male dogs only need one copy to be at risk. Males and females with any copies of the variant may pass the disorder-associated variant to their puppies if bred.

X-linked Dominant (XD): For X-linked dominant disorders, the genetic variant is found on the X chromosome. Both male and female dogs with one copy of the variant are at risk of developing the disorder. Females inheriting two copies of the variant may be at higher risk or show a more severe form of the disorder than with one copy. Males and females with any copies of the variant may pass the disorder-associated variant to their puppies if bred.

Mitochondrial (MT): Unlike the two copies of genomic DNA held in the nucleus, there are thousands of mitochondria in each cell of the body, and each holds its own mitochondrial DNA (mtDNA). Mitochondria are called the "powerhouses" of the cell. For a dog to be at risk for a mitochondrial disorder, it must inherit a certain ratio of mtDNA with the associated variant compared to normal mtDNA. mtDNA is inherited only from the mother.

Untimal Select